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Abstract—A finite-difference solution for steady natural convective flow in a concentric spherical annulus
with isothermal walls has been obtained. The stream function—vorticity formulation of the equations of
motion for the unsteady axisymmetric flow is used; interest lying in the final steady solution. Forward
differences are used for the time derivatives and second-order central differences for the space derivatives.
The alternating direction implicit method is used for solution of the discretization equations. Local one-
dimensional grid adaptation is used to resolve the steep gradients in some regions of the flow at large
Rayleigh numbers. The break-up into multi-cellular flow is found at high Rayleigh numbers for air and
water, and at significantly low Rayleigh numbers for liquid metals. Excellent agreement with previous
experimental and numerical data is obtained.

1. INTRODUCTION

BuoyaNcy-DRIVEN flows in enclosures are of import-
ance in various applications such as in nuclear reactor
design, aircraft cabin insulation, cooling of electronic
equipment, and thermal storage systems. In particu-
lar, natural convection heat transfer in the annular
space between concentric cylinders and spheres has
drawn considerable attention. Several numerical and
experimental studies of natural convection within a
spherical annulus for various values of the Prandtl
and Rayleigh numbers are available. Several types of
flow patterns inside the concentric spheres have been
observed for various gap-radius ratios, Prandtl and
Rayleigh numbers. Flow patterns may consist of one
cell, the crescent eddy type or kidney-shaped eddy
type, or may be multi-cellular for low diameter ratios
and high Rayleigh numbers.

Experimental data on natural convection between
isothermal concentric spheres, the inner being hotter,
have been provided by Bishop et al. [1,2], Scanlan ez
al. [3] and Yin er al. [4] for a very wide range of
Prandt! and Rayleigh numbers. Temperature dis-
tribution within the annulus was measured and
Nusselt-Grashof number correlations were presented.
Temperature profiles and flow patterns were,
however, presented for various temperature differ-
ences between the two spheres rather than for various
Rayleigh numbers. This makes direct comparison of
temperature distribution difficult since the mean tem-
perature for fluid property calculation is often
unspecified, making it difficult to estimate the
Rayleigh number. Amongst the numerical methods,
Mack and Hardee [5] developed a perturbation solu-
tion for the steady axisymmetric convection within the
isothermal concentric spherical annulus. They carried
the solution to terms proportional to the third power
of the Rayleigh number, and so could only present
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results for Rayleigh number, Ra = 1000, and Prandtl
number, Pr = 0.7. In fact, the temperature profiles in
their Fig. 3 for ¢ < 40° are in error, thus implying
that even at the low Ra of 1000, higher-order terms,
neglected in their solution, are essential for accuracy.
Brown [6] used explicit finite-difference techniques for
numerical integration of the governing equations, and
presented results for Pr = 0.7. His Nusselt number
values are about 10% higher than the experimental
values for all diameter ratios except the smallest.

Singh and Chen [7] developed a series solution in
terms of Legendre polynomials and Gegenbauer func-
tions for the same problem. They are able to obtain
results for Ra up to 9x 104, though they admit that
their results for Ra = 9 x 10* and Pr = 6 are in error
due to premature truncation of the series solution.
Moreover, for Pr = 0.02, Singh and Chen [7] could
not get convergence for Ra = 400. We confirm this
and present the accurate results for these cases, and
for much higher Rayleigh numbers. Caltagirone et
al. [8] carried out a finite-difference solution of the
unsteady equations for natural convection between
isothermal concentric spheres in order to get the
steady-state solution. However, they found two
different numerical solutions for a given set of par-
ameters. Ingham [9] presented numerical results for a
diameter ratio of 1.19 but found no multi-cellular flow
up to a Rayleigh number, based on the gap width, of
1.7 x 107 for air. Fujii et a/. [10] used a finite-difference
alternating direction implicit method and a successive
over-relaxation method but provided results only for
very large diameter ratios. Their aim was to find a
critical value of the diameter ratio at which heat trans-
fer from the inner sphere is no longer influenced by
the presence of the outer sphere.

Singh and Elliott [11] carried out a power series
solution for a thermally stratified medium between
concentric spheres. The inner sphere was kept either
at a constant temperature or constant heat flux, and
the outer sphere was maintained at a variable tem-
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NOMENCLATURE
a,, ay, ap false transient factors Greek symbols
g acceleration due to gravity o thermal diffusivity of the fluid
Gr Grashof number based on the gap width B coefficient of volumetric expansion of
k thermal conductivity of the fluid the fluid
k.  effective thermal conductivity of the AR  mesh size in the radial direction
spherical annulus A¢  mesh size in the ¢ direction
Nu  local Nusselt number At dimensionless time step
Nu  average Nusselt number 0 dimensionless temperature
Pr Prandtl number of the fluid v kinematic viscosity of the fluid
r radial coordinate measured from the T dimensionless time
center of the spheres ¢ latitude angle measured clockwise from
ri, r, radii of inner and outer spheres, the North position
respectively Y dimensional stream function
R dimensionless radial coordinate ¥ dimensionless stream function
Ra Rayleigh number based on the gap w dimensional vorticity
width = Gr Pr Q dimensionless vorticity.
S speed of fluid within the annulus
($?=U+VH
t time
T temperature of the fluid Subscripts
T,, T, temperature of the inner and outer b value at the boundary
spheres, respectively b+1 value at one mesh length AR away from
u velocity component in the ¢ direction the boundary
U dimensionless velocity component in the i value at the inner sphere
¢ direction o value at the outer sphere
v radial velocity component r refers to radial direction
vV dimensionless radial velocity component ¢ refers to latitude direction
X dimensionless radial coordinate. max maximum value.

perature for vertical stratification. They presented
results for Pr = 0.7 and very low Rayleigh numbers.
Moijtabi and Caltagirone [12] used a spectral method
to obtain results for an infinite Prandtl number, and
studied its linear stability. Nelsen et al. [13], Nelsen
and Douglass [14, 15], and Wright and Douglass [16]
analyzed natural convection in a spherical annulus
filled with a heat generating fluid, while Gardner et
al. [17] analyzed its linear stability characteristics for
small gap widths (inner to outer sphere radius ratios
of 0.9 and 0.95). Burns and Tien [18] used finite-
differences and regular perturbations for the study
of natural convection in porous media bounded by
concentric spheres and horizontal cylinders.

From the above description, it is apparent that
accurate numerical solution of the natural convective
flow within a concentric spherical annulus at realistic-
ally high Rayleigh numbers is not available. Also,
break-up into multi-cellular flow has not been pre-
dicted though it has been observed experimentally.
We, therefore, describe a finite-difference method that
is fast, reliable and accurate for any value of the
Rayleigh number for the steady axisymmetric natural
convection heat transfer of a viscous fluid enclosed
between two isothermal concentric spheres, and we
find the steady multi-cellular flow at high Grashof

numbers for all Prandt! numbers. The equations of
motion for the unsteady flow are solved to get the
steady-state solution. Local one-dimensional grid
adaptation is used to resolve the steep gradients in
some regions of the flow at large Rayleigh numbers.
This maintains orthogonality of the grid, unlike a two-
dimensional grid adaptation, thereby avoiding the
need to solve the complex transformed equations for
a non-orthogonal coordinate system. The alternating
direction implicit method is used for the solution of
the algebraic equations. The method can also be
applied to other geometries and boundary conditions.

2. ANALYSIS

Consider a constant property, except for density,
Newtonian fluid contained within a concentric spheri-
cal annulus. Assuming unsteady, axisymmetric, lami-
nar natural convective flow caused by the inner hot
and outer cold isothermal spheres, and using the
Boussinesq approximation and spherical coordinates,
the dimensionless energy and Navier-Stokes equa-
tions in the stream function—vorticity form are

9 U oo
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Here 6, ¥ and Q are the dimensionless temperature,
stream function and vorticity, respectively; R and
X are the dimensionless radial coordinates; ¢ is the
latitude angle measured clockwise from the vertically
upward position ; 7 is the dimensionless time; V and
U are the dimensionless velocity components in R
and ¢ directions, respectively, and Gr and Pr are the
Grashof and Prandtl numbers defined as

9=;::;:Z, W:Gr“/zzro—_wri-)—v,
A= n e R
ero:ri’ V=61 e v ’) Zslind)g—:’

Gr=gﬁ(Ti_7:j’2)(r°_ri)3, Pr=&‘

This scaling is suggested in the literature [19,20] for
Pr of order unity and large Gr. We retain it for
Pr = 0.02 as well. Also, following de Vahl Davis [20],
the energy equation (1) has been muitiplied by Pr so
that the solution time is almost independent of the
Prandtl number. Here, T, ¥, @, v, u and ¢ are the
dimensional counterparts of 6, ¥, Q, V, U and =,
respectively, and r is the radial coordinate. Also, T;,
T, and r;, r, are the inner and outer sphere tem-
peratures and radii, respectively, v and « are the kine-
matic viscosity and thermal diffusivity of the fluid,
respectively, g is the acceleration due to gravity, and
f is the coefficient of thermal expansion.

Due to axisymmetry (solution independent of the
Iongitude), only half the domain need be considered.
The following boundary and initial conditions apply :

1 R 4

¥=0 0=1 Q=-3asor *R=0
1 2y
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W=0, 3/0p=0 Q=0 atp=0,n
Y=0, 6=0, Q=0 atr=0. @)

3. NUMERICAL TECHNIQUE

Following de Vahl Davis [20], we introduce the false
transient equations in order to reduce the computer
time required for a numerical solution of equations
(1)—(4). The changes to the equations are the intro-
duction of false transient factors a,, ag and ay, and
the addition of a transient term to equation (2) to turn
it into a parabolic equation. Thus equations (1)-(3)
are written as

Q@+PG‘/2<V‘7€+U&0> v, (5

ag 0 0R X ¢
1 ¥
—a——D ¥ + XQ sin ¢, (6)
a\ya
1 6Q e 6(2 Uuoq Q
a061+G 6R X3 X(V—}-Ucotd))

IPRTY PN cosd)c'iG 20 Q
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The false transient factors change the time scales of
the governing equations, leading to a loss of the true
transient solution, but the final steady-state solution,
if one exists, is unaffected. Optimum values of these
factors, if found, speed up the convergence. Generally,
numerical instability arises first in the vorticity equa-
tion (7), and a reduction in a,, accompanied by a
corresponding increase in a, and ay permits a solution
to be obtained for larger parameter values [20]. No
attempt was made to optimize the values of false tran-
sient factors.

For the finite-difference solution of equations (5),
(6), (7) and (4), forward differences are used for the
time derivatives and second-order central differences
for the space derivatives. The resulting algebraic equa-
tions are solved by the alternating direction implicit
method, thus solving a set of tridiagonal equations
every time. In accordance with de Vahl Davis [20],
we found that the cell Reynolds number restriction
resulting from the use of second-order central differ-
ences for convection terms is not overwhelming due
to relatively small velocities in natural convection even
at large Grashof numbers. In order to keep the solu-
tion numerically stable, the time step Az is limited to a
value of the order of the square of the smaller of the
two mesh sizes AR and A¢, with the false transient
factors set to unity. In addition to their role in speed-
ing up the convergence, these factors are used to post-
pone the numerical instability at sufficiently large
values of the Grashof number.

It is well known that as the Grashof number
increases, the boundary layers on the spheres get thin-
ner and there are large gradients in the ¢ direction
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near small values of ¢. In order to resolve these radial
and azimuthal gradients, it is necessary to have a high
density of grid points near both spheres and for small
values of ¢. If the grid size is kept uniform, a very
large number of grid points would result leading to a
solution of a large set of equations. This would require
excessive computer time and involve large round-off
error. A practical solution is to use a fine mesh size
near regions of large gradients, and larger mesh size
elsewhere. In order to have a guided, rather than an
arbitrary, uneven distribution of grid points, a
local one-dimensional grid adaptation, following
Nakahashi and Deiwert’s method [21], is used. It may
be pointed out that a two-dimensional grid adaptation
renders the grid non-orthogonal, thus requiring the
solution of a complex set of transformed equations
owing to the presence of pseudo-diffusive terms. On
the other hand, one-dimensional grid adaptation in
each direction keeps the grid orthogonal, and, there-
fore, equations (5), (6), (7) and (4) remain unchanged.
However, with an uneven distribution of grid points,
the second-order central differences for space deriva-
tives need to be modified, as described by Hornbeck
[22].

While numerical experiments were carried out with
each of the three variables 8, ¥ and Q used for adap-
tation, it was found that, in most cases, adapting the
grid in the ¢ direction according to the temperature
profile at R = 1/2, and in the radial direction accord-
ing to the vorticity profile at small values of ¢, that
decrease as the Rayleigh number increases, yiclded
the best results. The number of grid points were taken
to be 41 in the radial direction and 46 in the ¢ direction
at low Rayleigh numbers, and increased to 81 and 91,
respectively, at high Ra. For Ra < 10°, results with a
41 x 46 grid matched well with those obtained with a
61 x 61 grid. The final solution of equations (5), (6),
(7) and (4) is fed into a very similar code for steady-
state equations of motion (without the initial con-
ditions and J/dt terms) to ensure that the solution
presented here is the steady-state one. Hardly any
iteration was required in this final step.

While the discretization of boundary conditions for
¥ and @ 1s straightforward, the boundary conditions
for Q in the radial direction are discretized, following
Woods 23], as

_ _3\Pb+1 -
Xb(ARb)z sin ¢b sz

where the subscripts ‘b’ and ‘b-+1” denote values at a
mesh point on the boundary and one mesh length
AR away from the boundary, respectively. This is a
second-order relation, thus matching with the dis-
cretization of the governing equations.

Q,

Qyris ®

4. ACCURACY

A check on the solution is provided by computing
the local Nusselt numbers on the inner and outer
spheres via the relations [5]
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_ 00
Ho = i 6R R | ’
In the steady state, these Nusselt numbers averaged
over each of the spheres must be equal, that is,

— kg

Nu, = Nu, = A
where kg is the effective conductivity for the spherical
annulus. Table 1 lists the values of Ny, and Nu, for a
diameter ratio of 2.0 and for various Rayleigh and
Prandtl numbers obtained with 41 x 46, 61 x 61 and
81 x 91 grids. Clearly, the difference between Ny, and
Nuy, is very small for all cases. Tabie 1 also lists values
of Nu based upon the empirical equations proposed
by Raithby and Hollands [24]

Nu = %‘f = 0.74{Pr/(Pr+0.861)} /4

(ro/ri—1)""*(Ra/2)""*
X {(ro/ri )“ +(ro/ri)y 7/5}5/4} ' (9)

and by Scanlan er al. [3]

Nu= %‘* = 0.228(Ra*)*2%, (10)
where Ra* = Rafor r,/r; = 2. Also tabulated in Table
1 are the percentage differences between our results
(Nu;+ Nu,)/2 and those from equations (9) and (10).
Since values of Nu cannot be less than unity, which is
the value for the pure heat conduction solution, we
make the Nu value unity if it falls below unity as
calculated using equation (9) or (10). As expected, all
our values are above unity. It is found that equation
(9) yields values close to ours for Pr = 6, while equa-
tion (10) is better at low Rayleigh numbers for
Pr = 0.7; the maximum difference being about 15%.
Scanlan er al. [3] note that equation (10) gives an
average deviation of 15.6%, and 76% of the exper-
imental data are within +20% of values predicted by
the equation. Comparison with experimental data is
thus satisfactory.

5. RESULTS

All the results presented here are for a diameter
ratio of 2.0, and Pr = 0.02 (liquid metal), 0.7 (air) and
6.0 (water). Results are similar in nature to those
for a horizontal, concentric, cylindrical annulus [25],
except that steady multi-cellular flow is found for all
Prandtl numbers. For validation of the technique,
initial solutions were obtained for comparison with
previously available results. A comparison was made
for Ra = 14000 and Pr = 0.7 with the results pro-
vided by Singh and Chen [7]. The results matched very
well. There was excellent agreement between both the
isotherms and the streamlines. The maximum value
of the dimensionless stream function in our case is
0.2071 while theirs is 0.2076, and the location of this
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Table 1. Average Nusselt numbers for r,/r; = 2

_ . Diff. Ny from Diff. Nufrom  Difl.
Ra Ny; Nu, (%)t equation (9) (%)} equation (10) (%)
With 41 x 46 grid; Pr = 0.7
70.0 1.0006 1.0006 0.00 1.0000 0.1 1.0000 0.1
420.0 1.0203 1.0203 0.00 1.0000 20 1.0000 20
1000.0 1.1006 1.1006 0.00 1.0000 9.1 1.0861 1.3
3000.0 1.4213 1.4212 0.01 1.2610 113 1.3924 2.0
6300.0 1.7393 1.7393 0.00 1.5180 12.7 1.6466 5.3
10 500.0 1.9848 1.9847 0.01 1.7248 13.1 1.8481 6.9
14000.0 2.1331 2.1330 0.00 1.8534 13.1 1.9722 7.5
21000.0 2.3560 2.3558 0.01 2.0511 129 2.1615 8.3
42000.0 2.7761 2.7763 0.0t 2.4392 12.1 2.5281 8.9
91000.0 3.3110 33181 0.2t 2.9594 10.7 3.0108 9.2
With 61 x 61 grid; Pr=0.7
180000.0 3.8645 3.8702 0.15 3.5096 9.3 35126 9.2
250000.0 4.1637 4.1567 0.17 3.8100 8.4 3.7833 9.1
With 41 x 46 grid; Pr=6
600.0 1.0405 1.0405 0.00 1.0000 3.9 1.0000 39
1500.0 1.1958 1.1958 0.00 1.2531 48 1.1905 04
3000.0 1.4489 1.4489 0.00 1.4902 2.8 1.3924 39
7350.0 1.8790 1.8790 0.00 1.8643 0.8 1.7049 9.3
18000.0 2.3633 2.3632 0.00 2.3323 1.3 2.0875 117
45000.0 2.9237 2.9259 0.08 2.9327 0.3 2.5678 12.2
90000.0 3.4237 3.4248 0.03 3.4877 1.8 3.0034 123
180000.0 4.0256 4.0067 047 4.1476 33 3.5127 125
360000.0 4.7474 4.7077 0.84 4.9323 4.3 4.1084 13.1
With 81 x 91 grid; Pr=6
180000.0 4.0239 4.0223 0.04 4.1474 3.1 3.5126 12.7
360000.0 4.7471 47510 0.08 49321 39 4.1083 13.5
660000.0 5.4900 5.5023 0.22 5.7391 4.4 4.7114 14.3
1000000.0 6.0661 6.0829 0.28 6.3673 4.8 5.1753 14.8
With 41 x 46 grid; Pr = 0.02
400.0 1.0127 1.0127 0.00 1.6000 13 1.0000 1.3
1000.0 1.0486 1.0485 0.01 1.0000 4.6 1.0863 3.6
1500.0 1.0817 1.0816 0.01 1.6000 7.5 1.1905 10.1
1800.0 1.1020 1.1019 0.01 1.0000 9.3 1.2406 126

¥ Difference between the present Ny, and Nu,.

} Difference between the present Ny and that from equation (9).
§ Difference between the present Nu and that from equation (10).

maximum coincides exactly. Moreover, while our
Nu = 2.1331, Singh and Chen [7] found a value of
2.1439.

A solution similar to the one presented by Mack
and Hardee [5] for Ra = 1000 and Pr = 0.7 was also
obtained. Based upon earlier validation of our
method, we find that the temperature profiles given
by Mack and Hardee for ¢ < 40° are in error, result-
ing from an inadequate number of terms summed in
their series solution. For this case, our Nu = 1,1006,
while Mack and Hardee [5] report a value of 1.12 and
Singh and Chen [7] report values of 1.1010 and 1.1007
obtained with three and five terms, respectively, in
their series solution.

The flow and heat transfer results can be divided
into several regimes depending upon the Rayleigh
number. Up to a Ra ~ O(10?), pure conduction domi-
nates the flow; the velocities being too small to affect
the temperature distribution. The center of rotation
(location of ¥,,,, ) is near 90°. The flow in the top and
bottom portions of the annulus is symmetrical about
the 90° position. As the Rayleigh number increases,

the center of rotation moves upward. The flow
remains in essentially the same pattern but becomes
strong enough to influence the temperature field. The
isotherms form eccentric circles near a Ra of 103, With
a further increase in Ra, the temperature distribution
gets distorted, resulting in higher overall heat transfer.

At a Rayleigh number of about 7350, radial tem-
perature inversion sets in, indicating the separation
of inner- and outer-sphere thermal boundary layers.
Thus, the fluid near the cool outer-sphere is warmer
than that closer to the hot inner-sphere. This phenom-
enon has also been observed in natural convection
between concentric cylinders [25] and in a vertical slot
[26]. Heat is convected from the lower portion of the
inner-sphere to the top of the outer-sphere. As shown
in Fig. 1, vorticity in the central core is almost constant
near and above this Ra, indicating a region approach-
ing solid-body rotation, and similar to flow in a ver-
tical slot {27]. Figures 1 and 2 show the Q values
normalized by {Q]... at various latitude angles. At
lower Rayleigh numbers, vorticity is well distributed
within the annulus. At much higher Rayleigh
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FiG. 1. Vorticity distribution for Ra = 7350 and Pr = 6 at
various angular positions. {Qy., = 3.156.

numbers, vorticity approaches zero in most of the
central portion of the annulus, as shown in Fig. 2 for
Ra = 6.6 x 10° and Pr = 6. This implies a stationary
core region, and is similar to the natural convection
flow in a vertical slot [28].

Figure 3 shows the isotherms and streamlines for
Ra =9x10* and Pr = 6. The isotherms in this and
later figures have been drawn at intervals of 0.1. Simi-
larly, the streamlines in all the results presented here
have been drawn at intervals of ¥,,,./10. The sign x
indicates the location of ¥,,,, also known as the
center of rotation for the fluid in the half annulus. As

84 T T T T T

0.2

0.0

® —02
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o -04
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FIG. 2. Vorticity distribution for Ra = 6.6 x 10° and Pr = 6
at various angular positions. [Ql,., = 15.52.
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Fic. 3. Isotherms and streamlines for Ra = 9% 10* and
Pr=6. Y, = 0.046.

is clear from Fig. 3, the almost stagnant region in the
bottom of the annulus is quite large, and it increases
with Ra. We may note that the results for this case
given by Singh and Chen [7] are in error. As admitted
by them, their solution for this case should have
included more terms in the series solution. A major
short-coming of their numerical technique is that as
the Grashof number increases, the number of terms
required for accurate solution increases, resulting in
a rapid increase in the amount of computation. For
this reason, they could not get accurate results for
moderate Gr of 15000, and no convergence for
Gr > 20000.

As the Rayleigh number increases further, the most
common flow pattern, the ‘crescent eddy’ type, shown
by the streamlines in Fig. 3, changes to a ‘kidney-
shaped eddy’ type of flow, as shown in Fig. 4 for

FiG. 4. Isotherms and streamlines for Ra = 2.5x 10° and
Pr=07%,.,=0105
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F1G. 5. Isotherms and streamlines for Ra = 10® and Pr = 6.
¥ =0.024.

Ra=25x10°> and Pr=07, and in Fig. 5 for
Ra = 10°% and Pr = 6. Since the kidney eddy type
differs only qualitatively from the crescent eddy type
in the shape of streamlines in the low-speed central
eddy region, the heat transfer characteristics of the
two types of flow are similar. Streamlines in Fig. §
compare very well with the flow pattern found exper-
imentally in the Fig. 8 of Yin ez al. [4], while those in
Fig. 4 are similar to the experimental flow pattern in
the Fig. 5 of Bishop et al. {2]. Moreover, both Figs. 4
and 5 show a small anti-clockwise rotating secondary
cell in the bottom of the annulus, while the primary
central eddy is clockwise. For both Pr = 0.7 and 6.0,
this secondary cell appears at Ra =~ 1.6 x 10° near the
bottom of the outer-sphere. As Ra increases, the sec-
ondary cell grows and moves towards the inner-

1941

sphere; Fig. 5 shows its location between the two
spheres at ¢ &~ 180°. Of course, the secondary cell
represents small negative values of the stream
function. We may note that in experiments with air in
a spherical annulus of diameter ratio 1.19, Bishop et
al. [2] found two secondary cells having a sense of
rotation opposite to that of the primary central eddy
at high Rayleigh numbers. One of these cells was
found near the top of the inner-sphere, and the other
at the bottom of the outer-sphere. Ingham [9],
however, did not find any secondary cell numerically
for the same parameters. For the much higher diam-
eter ratio of 2, we find only one secondary cell at
the bottom of the annulus for both air and water at
Rayleigh numbers of order 10°.

Figure 6 shows the temperature profiles at various
angular positions for Ra = 10° and Pr = 6. The large
temperature gradients in the radial direction near both
the spheres, and in the latitude direction for small ¢
values are clearly evident. This calls for high grid
resolution, pointing to the usefulness of grid adap-
tation, near both spheres and for ¢ < 30° at high
Rayleigh numbers. Also worthy of note in Fig. 6 are
the temperature inversions in the core of the annulus.

For liquid metals, the multi-cellular flow really
comes to life, as shown in Figs. 7-9. Figure 7 shows
the isotherms and streamlines for Gr = 20000 and
Pr = 0.02. It may be noted that results given by Singh
and Chen [7] for this case are wrong. As reported by
them, they did not get convergence for these par-
ameter values. Besides, they did not find the small
secondary cell at the top of the annulus near the outer
sphere. This cell has an anti-clockwise rotation, while
the main eddy is clockwise. As the Grashof number
increases, more cells are formed, as shown in Fig. §
for Gr = 50000 and in Fig. 9 for Gr = 90000, both
for Pr = 0.02. In both Figs. 8 and 9, the clockwise cell
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F1G. 6. Temperature profiles for Rz = 10° and Pr = 6 at various angular positions. (——) ¢ = 0, 30, 120°;
()¢ =S5,40,140°; (---) ¢ = 10, 60, 180°; (—-—) ¢ = 15, 80°; (—-—) ¢ = 20, 100°.
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Fi1G. 7. Isotherms and streamlines for Gr = 20000 and
Pr = 0.02. ¥,,, = 0.459.

3(
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FiG. 8. Isotherms and streamlines for Gr = 50000 and
Pr=0.02. ¥, =0579.

at about 30° position corresponds to W/¥ .. = 0.1.
The anti-clockwise cells are weaker than the main
eddy. Looking at Figs. 7-9, one notices that the small
anti-clockwise cell at the top of the annulus in Fig. 7
grows in Fig. 8 and breaks up into two counter-rotat-
ing cells in Fig. 9. With so many cells appearing in the
flow domain, much smaller steps in Gr have to be
taken to ensure convergence of the solution near a
Grashof number of 90 000. The isotherms are almost
concentric circles at Gr = 20000 (Fig. 7) but get dis-
torted (differently than those for Pr = 0.7 and 6.0) as
Gr increases (Figs. 8 and 9). Since the bulk of the
motion is confined around ¢ = 90°, more distortion
of the isotherms takes place in this region.

Figure 10 provides the variation of maximum
values of stream function, vorticity, and speed in the
annulus with the Grashof number. It may be noted
that the maximum speed, S, scales with the Grashof
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F1G. 9. Isotherms and streamlines for Gr=90000 and
Pr = 0.02. ¥, = 0.649.

number rather than the Rayleigh number. In fact, the
effect of Pr on S, and |Q..« is very smalil for all
Grashof numbers. This figure also shows that, for
large Grashof numbers, the maximum value of stream
function within the spherical annulus decreases as the
Prandt! number increases.

The local Nusselt numbers of the inner- and outer-
spheres, Ny, and Nu,, at various latitude angles are
shown in Figs. 11 and 12, respectively, as a function
of the Rayleigh number for Pr=0.7 and 6.0. The
Nusselt number approaches unity in the conduction
regime for Ra below 100. On both the spheres, some
local values are larger than unity while others are less
than unity at the same Rayleigh number. The dashed
curves in Figs. 11 and 12 represent the variation of
the average Nusselt number with the Rayleigh
number ; the lower curve being for Pr = 0.7. A small
effect of the Prandtl number is also visible in these
figures. The Nusselt number is generally smaller and
more uniform at lower Prandtl number. Results for
Pr = 0.02 are not given since Nusselt number values
in this case are close to unity for the range of Rayleigh
numbers investigated. The maximum Rayleigh num-
ber for Pr = 0.02 was 1800, and the average Nusselt
number was 1.1.

Clearly, the largest temperature gradient and heat
flux occur at the stagnation point, while the largest
boundary layer thickness and smallest temperature
gradient occur at the separation point. Thus, for the
inner-sphere, the local heat flux at the bottom is the
largest while that at the top is small. For the outer-
sphere, the stagnation point is at the top along with
the high heat flux, while the separation point is at
the bottom resulting in the low heat flux there. The
buoyant plume above the inner-sphere impinges upon
the outer-sphere at the top, creating the thinnest
boundary layer and the highest heat flux for the
system. This warm fluid then moves down the bound-
ary layer adjacent to the outer-sphere. For this reason,
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Fi1G. 11. Local Nusselt number on the inner-sphere as a function of Ra at 30° intervals in ¢.

higher resolution is required for ¢ < 30° at Rayleigh
numbers greater than about 10°. The presence of
boundary layers on both walls and the large gradients
near the top suggests that the mesh points be closely
spaced for ¢ < 30° in the ¢ direction, and near both
the spheres (R = 0 and 1) in the radial direction. Grid
adaptation is specially useful for the large Rayleigh
numbers.

6. CONCLUSIONS

An efficient numerical technique for the study of
natural convection flow in a concentric spherical

annulus with isothermal walls has been described.
Results are presented for a diameter ratio of 2 and
three Prandtl numbers, 0.02, 0.7 and 6. The Rayleigh
number based on the gap width varies from about 102
to 10°. Accurate results for higher Rayleigh numbers
can be easily computed. The break-up into multi-
cellular flow is found at high Rayleigh numbers for
air and water, and at significantly low Rayleigh
numbers for liquid metals. Results for the vorticity
distribution within the spherical annulus are also pro-
vided. Unlike previous methods, the present technique
is quite efficient and robust in yielding accurate results
for high Rayleigh numbers.
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CONVECTION NATURELLE ENTRE DES SPHERES CONCENTRIQUES

Résumé—On obtient une solution par différences finies de I'écoulement convectif dans un espace entre
sphéres concentriques avec parois isothermes. La formulation fonction de courant-vorticité des équations
du mouvement est utilisée pour traiter la solution finale de I’état permanent. La méthode implicite des
directions alternées est utilisée pour la résolution des équations discrétes avec une adaptation de grille
monodimensionnelle locale pour les sauts de gradient dans quelques régions de I'écoulement aux grands
nombres de Rayleigh. On trouve la division en écoulements multicellulaires aux grands nombres de
Rayleigh pour Iair et I'eau et & faibles nombres de Rayleigh pour les métaux liquides. On obtient un
excellent accord entre les données expérimentales antérieures et les calculs.

NATOURLICHE KONVEKTION ZWISCHEN KONZENTRISCHEN KUGELN

Zusammenfassung—Mit Hilfe eines Finite-Differenzen-Verfahrens wird die stationdre natiirliche Kon-
vektion in einem Ringspalt zwischen zwei konzentrischen Kugeln mit isothermen Oberflichen berechnet.
Fiir die Impulsgleichungen der nichtstationdren achsensymmetrischen Strémung wird die Stromfunktions-
Wirbeltransportformulierung verwendet ; das Interesse liegt jedoch bei der sich am Ende einstellenden
stationdren Losung. Fiir die zeitlichen Ableitungen werden Vorwirtsdifferenzen verwendet, fiir die rium-
lichen Ableitungen zentrale Differenzen zweiter Ordnung. Fiir die Losung der diskretisierten Gleichungen
wird die implizite Methode der alternierenden Richtungen benutzt. Ortliche eindimensionale Git-
teranpassung wird herangezogen, um die tibermaBig steilen Gradienten in einigen Bereichen der Strémung
bei groBen Rayleigh-Zahlen aufzulfsen. Bei hohen Rayleigh-Zahlen ergibt sich im Fall von Luft und
Wasser ein Aufbrechen in eine multizellulare Stromung, bei fllissigen Metallen ist dies bei recht kleinen
Rayleigh-Zahlen der Fall. Die Ubereinstimmung mit friiheren experimentellen und numerischen Ergeb-
nissen ist exzellent.

ECTECTBEHHAS KOHBEKLIMA MEXAY KOHIEHTPHUECKHMHU COEPAMU

Asnoraums—KoHEeMHO-PA3HOCTHBIM METOLOM [OJIy4EHO PEIICHHE 3aAaYH CTAIHOHAPHOIO €CTECTBERHO-
KOHBEKTHBHOTO TEUEHHs B KOJIBIEBOM KaHaJle C H30TEPMHYECKHM CTEHKAMH, 06 pa3oBaHHOM KOHUEHTPH-
4eckuMHU cepaMH. YDaBHCHAS JBHAKCHHS /1A HECTALMOHAPHOTO OCECHMMETPHKHOTO TEYEHHS NaHbI B
$opMymHpoBKe PYHKIHA TOKa—3aBHXPEHHOCTD, IPHYEM OCHOBHOMH MHTEPEC NIPEACTABIACT KOHEYHOE CTa-
LUMOHapHOE peineHne. JInd BpeMEHHBX NPOM3BOAHBLIX HCIONB3YIOTCS NpPABLIE Pa3HOCTH, 4 AIA
NPOCTPaHCTBEHHBIX—LEHTPAILHBIE PAHOCTH BTOPOTO nNOpAAxa. KOHEYHO-PA3HOCTHBIE YpaBHEHHs
PeLIAIOTCH HEABHBLIM METONOM NMepeMeHHbIX Hanpasienuii. [l ananmaa 6obILEX rPAJHEHTOB B HEKO-
TOPHIX O0ACTAX TeYECHHA IPH BRICOKUX YHCIAX Pajsiess npuMeHseTCH JIOKAIbHAR ANANTALAS OOHOMEPHOM
cerkn. OOuapyxeHO pasfesicHHe HA MHOTOSYCHCTOE TEYEHHE NPH BBHICOKMX uMCaax Panes B cayvae
BO3JyXa ® BOJBI M TPH CYHIECTBEHHO HM3KMX guciax Pases B caydae xuukux meramnos. [Tomyseno
OYCHB XOPOLLEE COrIacHe C NPEAbLIYLIMMY IKCIEPHMEHTANTBHBIMHE H YHCIICHHBIME JaHHBIMH.



