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Abstract-A finite-difference solution for steady natural convective flow in a concentric spherical annulus 
with isothermal walls has been obtained. The stream fiction-vorti~ity fo~ulation of the equations of 
motion for the unsteady axisymmetric flow is used; interest lying in the final steady solution. Forward 
differences are used for the time derivatives and second-order central differences for the space derivatives. 
The alternating direction implicit method is used for solution of the discretization equations. Local one- 
dimensional grid adaptation is used to resolve the steep gradients in some regions of the flow at large 
Rayleigh numbers. The break-up into multi-cellular flow is found at high Rayleigb numbers for air and 
water, and at s~~jfi~ntly low Rayleigh numbers for liquid metals. Excellent agreement with previous 

experimental and numerical data is obtained. 

1. INTRODUCTION 

BUOYANCY-DRI~N flows in enclosures are of import- 
ance in various applications such as in nuclear reactor 
design, aircraft cabin insulation, cooling of electronic 
equipment, and thermal storage systems. In particu- 
lar, natural convection heat transfer in the annular 
space between concentric cylinders and spheres has 
drawn considerable attention. Several numerical and 
experimental studies of natural convection within a 
spherical annulus for various values of the Prandtl 
and Rayleigh numbers are available. Several types of 
flow patterns inside the concentric spheres have been 
observed for various gap-radius ratios, Prandtl and 
Rayleigh numbers. Flow patterns may consist of one 
cell, the crescent eddy type or kidney-shaped eddy 
type, or may be multi-cellular for low diameter ratios 
and high Rayleigh numbers. 

Experimental data on natural convection between 
isothermal concentric spheres, the inner being hotter, 
have been provided by Bishop et al. [l, 21, Scanlan et 

al. [3] and Yin et al. [4] for a very wide range of 
Prandtl and Rayleigh numbers. Tem~rature dis- 
tribution within the annulus was measured and 
Nusselt-Grashof number correlations were presented. 
Temperature profiles and flow patterns were, 
however, presented for various temperature differ- 
ences between the two spheres rather than for various 
Rayleigh numbers. This makes direct comparison of 
temperature distribution difficult since the mean tem- 
perature for fluid property calculation is often 
unspecified, making it difficult to estimate the 
Rayleigh mm&r. Amongst the numerical methods, 
Mack and Hardee [5] developed a perturbation solu- 
tion for the steady axisymmetric convection within the 
isothermal concentric spherical annulus. They carried 
the solution to terms proportional to the third power 
of the Rayleigh number, and so could only present 
~-- -_ _ 
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results for Rayleigh number, Ra = 1000, and Prandtl 
number, Pr = 0.7. In fact, the temperature profiles in 
their Fig. 3 for # < 40” are in error, thus implying 
that even at the low Ra of 1000, higher-order terms, 
neglected in their solution, are essential for accuracy. 
Brown [6] used explicit finite-difference techniques for 
numerical integration of the governing equations, and 
presented results for Pr = 0.7. His Nusselt number 
values are about 10% higher than the experimental 
values for all diameter ratios except the smallest. 

Singh and Chen [A developed a series solution in 
terms of Legendre polynomials and Gegenbauer func- 
tions for the same problem. They are able to obtain 
results for Ru up to 9 x 104, though they admit that 
their results for Ra = 9 x 10“ and Pr = 6 are in error 
due to premature truncation of the series solution. 
Moreover, for Pr = 0.02, Singh and Chen [7] could 
not get convergence for Ra = 400. We confirm this 
and present the accurate results for these cases, and 
for much higher Rayleigh numbers. Caltagirone et 
al. [8] carried out a finite-difference solution of the 
unsteady equations for natural convection between 
isothermal concentric spheres in order to get the 
steady-state solution. However, they found two 
different numerical solutions for a given set of par- 
ameters. Ingham [9] presented numerical results for a 
diameter ratio of 1.19 but found no multi-cellular flow 
up to a Rayleigh number, based on the gap width, of 
1.7 x lo5 for air. Fujii et al. [lo] used a finite-difference 
alternating direction implicit method and a successive 
over-relaxation method but provided results only for 
very large diameter ratios. Their aim was to find a 
critical value of the diameter ratio at which heat trans- 
fer from the inner sphere is no longer influenced by 
the presence of the outer sphere. 

Singh and Elliott [l I] carried out a power series 
solution for a thermally stratified medium between 
concentric spheres. The inner sphere was kept either 
at a constant temperature or constant heat flux, and 
the outer sphere was maintained at a variable tem- 
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NOMENCLATURE 

ao, av,, a, false transient factors Greek symbols 

g acceleration due to gravity thermal diffusivity of the fluid 
Gr Grashof number based on the gap width ;1 coefficient of volumetric expansion of 
k thermal conductivity of the fluid the fluid 
k eff effective thermal conductivity of the AR mesh size in the radial direction 

spherical annulus A4 mesh size in the 4 direction 
NU local Nusselt number AZ dimensionless time step 
NU average Nusselt number 8 dimensionless temperature 
Pr Prandtl number of the fluid V kinematic viscosity of the fluid 
r radial coordinate measured from the z dimensionless time 

center of the spheres 4 latitude angle measured clockwise from 

ri, ra radii of inner and outer spheres, the North position 
respectively * dimensional stream function 

R dimensionless radial coordinate Y dimensionless stream function 
Ra Rayleigh number based on the gap dimensional vorticity 

width = Gr Pr i dimensionless vorticity. 
s speed of fluid within the annulus 

(S2 = I!?+ V*) 
t time 
T temperature of the fluid Subscripts 
T,, To temperature of the inner and outer b value at the boundary 

spheres, respectively b + 1 value at one mesh length AR away from 
u velocity component in the 4 direction the boundary 
u dimensionless velocity component in the i value at the inner sphere 

4 direction 0 value at the outer sphere 
V radial velocity component r refers to radial direction 
V dimensionless radial velocity component $J refers to latitude direction 
x dimensionless radial coordinate. max maximum value. 

perature for vertical stratification. They presented 
results for Pr = 0.7 and very low Rayleigh numbers. 
Mojtabi and Caltagirone [12] used a spectra1 method 
to obtain results for an infinite Prandtl number, and 
studied its linear stability. Nelsen et al. [13], Nelsen 
and Douglass [ 14,151, and Wright and Douglass [16] 
analyzed natural convection in a spherical annulus 
filled with a heat generating fluid, while Gardner et 
al. [ 171 analyzed its linear stability characteristics for 
small gap widths (inner to outer sphere radius ratios 
of 0.9 and 0.95). Burns and Tien [18] used finite- 
differences and regular perturbations for the study 
of natural convection in porous media bounded by 
concentric spheres and horizontal cylinders. 

From the above description, it is apparent that 
accurate numerical solution of the natural convective 
flow within a concentric spherical annulus at realistic- 
ally high Rayleigh numbers is not available. Also, 
break-up into multi-cellular flow has not been pre- 
dicted though it has been observed experimentally. 
We, therefore, describe a finite-difference method that 
is fast, reliable and accurate for any value of the 
Rayleigh number for the steady axisymmetric natural 
convection heat transfer of a viscous fluid enclosed 
between two isothermal concentric spheres, and we 
find the steady multi-cellular flow at high Grashof 

numbers for all Prandtl numbers. The equations of 
motion for the unsteady flow are solved to get the 
steady-state solution. Local one-dimensional grid 
adaptation is used to resolve the steep gradients in 
some regions of the flow at large Rayleigh numbers. 
This maintains orthogonality of the grid, unlike a two- 
dimensional grid adaptation, thereby avoiding the 
need to solve the complex transformed equations for 
a non-orthogonal coordinate system. The alternating 
direction implicit method is used for the solution of 
the algebraic equations. The method can also be 
applied to other geometries and boundary conditions. 

2. ANALYSIS 

Consider a constant property, except for density, 
Newtonian fluid contained within a concentric spheri- 
cal annulus. Assuming unsteady, axisymmetric, lami- 
nar natural convective flow caused by the inner hot 
and outer cold isothermal spheres, and using the 
Boussinesq approximation and spherical coordinates, 
the dimensionless energy and Navier-Stokes equa- 
tions in the stream function-vorticity form are 

Prg +PrGr”’ 
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D2Y + XQ sin 4 = 0, (2) 

= -GrJt2 
ae ~0~4 ae 

sin4,, + __ - 
R 

X 84 
+VQ- ~ 

X2 sin’ I$’ 

(3) 

where 

cot& a 
x23p 

a2 i a2 cot4 a __- D2=@+~@- _y2 a&' 

Here 6, Y and fi are the dimensionless temperature, 
stream function and vorticity, respectively ; R and 
X are the dimensionless radial coordinates; 4 is the 
latitude angle measured clockwise from the vertically 
upward position ; z is the dimensionless time ; I/ and 
U are the dimensionless velocity components in R 
and C/J directions, respectively, and Gr and Pr are the 
Grashof and Prandtl numbers defined as 

T-T 
B=L 

T, - To ’ 
v = Gr-‘/*_!k_ 

(r,-r,)v’ 

Q = Gr- l/2 o(royri)2, 
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X=r v = Gr- ‘I2 4ro - C ) 1 lw 

r,-ri’ V =%%Kjz$> 

1 ay (i=Gr-~!2&+ 
Xsin 4 aR’ 

Gr=gS(T-To)(ro-ri)3 
V* 

, Pr=!. 
ci 

This scaling is suggested in the literature [19,20] for 
Pr of order unity and large Gr. We retain it for 
Pr = 0.02 as well. Also, following de Vahl Davis [20], 
the energy equation (1) has been multiplied by Pr so 
that the solution time is almost independent of the 
Prandtl number. Here, T, $, w, v, u and t are the 
dimensional counterparts of 8, Y, f,2, V, U and r, 
respectively, and r is the radial coordinate. Also, Ti, 
T,, and ri, r. are the inner and outer sphere tem- 
peratures and radii, respectively, v and c( are the kine- 
matic viscosity and thermal diffusivity of the fluid, 
respectively, g is the acceleration due to gravity, and 
/I is the coefficient of thermal expansion. 

Due to axisymmetry (solution independent of the 
longitude), only half the domain need be considered. 
The following boundary and initial conditions apply : 

1 a2Y 
Y=O, e=1, R=--7 

Xsin fj aR 
at R = 0, 

Y=O, e=o, R=- 
1 a*y 

zfiE#AP 
atR= 1, 

Y=o, ae/a4=0, n=o at4=0,7t 

Y=O, 6=0, Q=O at7=0. (4) 

3. NUMERICAL TECHNIQUE 

Following de Vahl Davis [20], we introduce the false 
transient equations in order to reduce the computer 
time required for a numerical solution of equations 
(l)-(4). The changes to the equations are the intro- 
duction of false transient factors a@, a, and a.,,, and 
the addition of a transient term to equation (2) to turn 
it into a parabolic equation. Thus equations (l)-(3) 
are written as 

~~+PrGr112(lf~+~$=V28, (5) 

kg= D*Y+XQsin& 

&g+Gr [ I/* v~+;~-~(Y+ucot~) 1 
= -Gr”* 

ae COS+ a0 
sin 4% + XG +v*a- 

> 

R 

msin2 

(7) 

The false transient factors change the time scales of 
the governing equations, leading to a loss of the true 
transient solution, but the final steady-state solution, 
if one exists, is unaffected. Optimum values of these 
factors, if found, speed up the convergence. Generally, 
numerical instability arises first in the vorticity equa- 
tion (7), and a reduction in a,, accompanied by a 
corresponding increase in us and Us permits a solution 
to be obtained for larger parameter values [20]. No 
attempt was made to optimize the values of false tran- 
sient factors. 

For the finite-difference solution of equations (5), 
(6), (7) and (4), forward differences are used for the 
time derivatives and second-order central differences 
for the space derivatives. The resulting algebraic equa- 
tions are solved by the alternating direction implicit 
method, thus solving a set of tridiagonal equations 
every time. In accordance with de Vahl Davis [20], 
we found that the cell Reynolds number restriction 
resulting from the use of second-order central differ- 
ences for convection terms is not overwhelming due 
to relatively small velocities in natural convection even 
at large Grashof numbers. In order to keep the solu- 
tion numerically stable, the time step A7 is limited to a 
value of the order of the square of the smaller of the 
two mesh sizes AR and Ad, with the false transient 
factors set to unity. In addition to their role in speed- 
ing up the convergence, these factors are used to post- 
pone the numerical instability at sufficiently large 
values of the Grashof number. 

It is well known that as the Grashof number 
increases, the boundary layers on the spheres get thin- 
ner and there are large gradients in the C#J direction 
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near small values of #. In order to resolve these radial 
and azimuthal gradients, it is necessary to have a high 
density of grid points near both spheres and for small 
values of 4. If the grid size is kept uniform, a very 
large number of grid points would result leading to a 
solution of a large set of equations. This would require 
excessive computer time and involve large round-off 
error. A practical solution is to use a fine mesh size 
near regions of large gradients, and larger mesh size 
elsewhere. In order to have a guided, rather than an 
arbitrary, uneven distribution of grid points, a 
local one-djmensional grid adaptation, following 
Nakahashi and Deiwert’s method 1211, is used. It may 
be pointed out that a two-dimensional grid adaptation 
renders the grid non-orthogonal, thus requiring the 
solution of a complex set of transformed equations 
owing to the presence of pseudo-diffusive terms. On 
the other hand, one-dimensional grid adaptation in 
each direction keeps the grid orthogonal, and, there- 
fore, equations (5), (6), (7) and (4) remain unchanged. 
However, with an uneven distribution of grid points, 
the second-order central differences for space deriva- 
tives need to be modified, as described by Hornbeck 

w2. 
While numerical experiments were carried out with 

each of the three variables 0, UT and R used for adap- 
tation, it was found that, in most cases, adapting the 
grid in the #I direction according to the temperature 
profile at R = l/2, and in the radial direction accord- 
ing to the vorticity profile at small values of 4, that 
decrease as the Rayleigh number increases, yielded 
the best results. The number of grid points were taken 
to be 4 1 in the radial direction and 46 in the Q, direction 
at low Rayieigh numbers, and increased to 8 1 and 9 1, 
respectively, at high Ra. For Ra < IO*, results with a 
41 x 46 grid matched well with those obtained with a 
61 x 61 grid. The final solution of equations (S), (6), 
(7) and (4) is fed into a very similar code for steady- 
state equations of motion (without the initial con- 
ditions and a/& terms) to ensure that the solution 
presented here is the steady-state one. Hardly any 
iteration was required in this final step. 

While the discretization of boundary conditions for 
Y and B is straightforward, the boundary conditions 
for Q in the radial direction are discretized, following 
Woods 1231, as 

ah = 
-3yb+i --_I 

X&AR,)’ sin & Xb+Q&+,, 
2X, (8) 

where the subscripts ‘b’ and ‘b-+- I’ denote values at a 
mesh point on the boundary and one mesh length 
AR away from the boundary, respectively. This is a 
second-order relation, thus matching with the dis- 
cretization of the governing equations. 

4. ACCURACY 

A check on the solution is provided by computing 
the local Nusselt numbers on the inner and outer 
spheres via the relations [5] 

In the steady state, these Nusselt numbers averaged 
over each of the spheres must be equal, that is, 

where keKis the effective conductivity for the spherical - 
annulus. Table 1 lists the values of Nui and K for a 
diameter ratio of 2.0 and for various Rayleigh and 
Prandtl numbers obtained with 41 x 46, 61 x 61 and - 
8 1 x 9 1 grids. Clearly, the difference between Nuj and 
-. 
Nu, 1s very small for all cases. Table 1 also lists values 
of a based upon the empirical equations proposed 
by Raithby and Hollands [24] 

E = + = 0.74{Pr/(Pr+0.861)}‘/4 

i 

(rO/ri - 1) “4(Ra/2) f/4 

’ (rJri)[l +(r,Jri)-7’5]s’4 ’ (9) I 

and by Scanlan et ~6. [3] 

NU = % = 0.228(Ru~)~.**‘, 

where Ra* = Ra for r.Jr, = 2. Also tabulated in Table 
1 are the percentage differences between our results -- 
(Nui+ NuJ2 and those from equations (9) and (10). 
Since values of x cannot be less than unity, which is 
the value for the pure heat conduction solution, we 
make the x< value unity if it falls below unity as 
calculated using equation (9) or (10). As expected, all 
our values are above unity. It is found that equation 
(9) yields values close to ours for Pr = 6, while equa- 
tion (10) is better at low Rayleigh numbers for 
Pr = 0.7 ; the maximum difference being about 15%. 
Scanlan et al. [3] note that equation (10) gives an 
average deviation of 15.6%) and 76% of the exper- 
imental data are within f 20% of values predicted by 
the equation. Comparison with experimental data is 
thus satisfactory. 

5. RESULTS 

All the results presented here are for a diameter 
ratio of 2.0, and Pr = 0.02 (liquid metal), 0.7 (air) and 
6.0 (water), Results are similar in nature to those 
for a horizontal, concentric, cylindrical annulus 1251, 
except that steady multi-cellular flow is found for all 
Prandtl numbers. For validation of the technique, 
initial solutions were obtained for comparison with 
previously available results. A comparison was made 
for Ra = 14000 and Pr = 0.7 with the results pro- 
vided by Singh and Chen [7]. The results matched very 
well. There was excellent agreement between both the 
isotherms and the streamlines. The maximum value 
of the dimensionless stream function in our case is 
0.2071 while theirs is 0.2076, and the location of this 
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Table I. Average Nusselt numbers for r,/ri = 2 

1939 

Ra 
- - 
NUi Nu, 

Diff. Nu from Diff. Nu from Diff. 
(“/It equation (9) (%I$ equation (10) (%)$ 

With 41 x 46 grid ; Pr = 0.7 
70.0 1 BOO6 

420.0 1.0203 
1000.0 1.1006 
3000.0 1.4213 
6300.0 1.7393 

10500.0 1.9848 
14000.0 2.1331 
2 1000.0 2.3560 

1 BOO6 
1.0203 
1.1006 
1.4212 
1.7393 
1.9847 
2.1330 
2.3558 

42 000.0 2.7761 2.7763 
91000.0 3.3110 3.3181 

With61~61grid;Pr=0.7 
180000.0 3.8645 
250000.0 4.1637 

With4lx46grid;Pr=6 
600.0 1.0405 

1500.0 1.1958 
3000.0 1.4489 
7350.0 1.8790 

18000.0 2.3633 
45 000.0 2.9237 
90 00&o 3.4237 

180000.0 4.0256 
360000.0 4.7474 

With8lx9lgrid;Pr=6 
180000.0 4.0239 
360000.0 4.7471 
660 000.0 5.4900 

1000 000.0 6.0661 

With 41 x 46 grid ; Pr = 0.02 
400.0 1.0127 

1000.0 1.0486 
1500.0 1.0817 
1800.0 1.1020 

3.8702 0.15 3.5096 9.3 3.5126 9.2 
4.1567 0.17 3.8100 8.4 3.7833 9.1 

1.0405 
1.1958 
14489 
1.8790 
2.3632 
2.9259 
3.4248 
4.0067 
4.7077 

4.0223 0.04 4.1474 3.1 3.5126 12.7 
4.7510 0.08 4.9321 3.9 4.1083 13.5 
5.5023 0.22 5.7391 4.4 4.7114 14.3 
6.0829 0.28 6.3673 4.8 5.1753 14.8 

1.0127 0.00 1.0000 1.3 1.0000 1.3 
1 MS5 0.01 1.0000 4.6 1.0863 3.6 
1.0816 0.01 1.0000 7.5 1.1905 10.1 
1.1019 0.01 1.0000 9.3 1.2406 12.6 

0.00 1.0000 0.1 1.0000 0.1 
0.00 1.0000 2.0 1 .ooOO 2.0 
0.00 1.0000 9.1 1.0861 1.3 
0.01 1.2610 11.3 1.3924 2.0 
0.00 1.5180 12.7 1.6466 5.3 
0.01 1.7248 13.1 1.8481 6.9 
0.00 1.8534 13.1 1.9722 7.5 
0.01 2.0511 12.9 2.1615 8.3 
0.01 2.4392 12.1 2.5281 8.9 
0.21 2.9594 10.7 3.0108 9.2 

8E 
0:OO 
0.00 

::: 
0.03 
0.47 
0.84 

1.0000 3.9 1.0000 3.9 
1.2531 4.8 1.1905 0.4 
1.4902 2.8 1.3924 3.9 
1.8643 0.8 1.7049 9.3 
2.3323 1.3 2.0875 11.7 
2.9327 0.3 2.5678 12.2 
3.4877 1.8 3.0034 12.3 
4.1476 3.3 3.5127 12.5 
4.9323 4.3 4.1084 13.1 

t Difference between the present N& and sx. 
$ Difference between the present z and that from equation (9). 
§Difference between the present a and that from equation (10). 

maximum coincides exactly. Moreover, while our - 
Nu = 2.1331, Singh and Chen [7] found a value of 
2.1439. 

A solution similar to the one presented by Mack 
and Hardee [5] for Ra = 1000 and Pr = 0.7 was also 
obtained. Based upon earher validation of our 
method, we find that the temperature profiles given 
by Mack and Hardee for # < 40” are in error, result- 
ing from an inadequate number of terms summed in 
their series solution. For this case, our % = 1.1006, 
while Mack and Hardee [S] report a value of 1.12 and 
Singh and Chen [7] report values of 1.1010 and 1.1007 
obtained with three and five terms, respectively, in 
their series solution. 

The flow and heat transfer results can be divided 
into several regimes depending upon the Rayleigh 
number. Up to a Ra - O(lO’), pure conduction domi- 
nates the flow ; the velocities being too small to affect 
the temperature distribution. The center of rotation 
(location of Y,,) is near 90”. The flow in the top and 
bottom portions of the annulus is symmetrical about 
the 90” position. As the Rayleigh number increases, 

the center of rotation moves upward. The flow 
remains in essentially the same pattern but becomes 
strong enough to influence the temperature field. The 
isotherms form eccentric circles near a Ra of 103. With 
a further increase in Ra, the temperature distribution 
gets distorted, resulting in higher overall heat transfer. 

At a Rayleigh number of about 7350, radial tem- 
perature inversion sets in, indicating the separation 
of inner- and outer-sphere thermal boundary layers. 
Thus, the fluid near the cool outer-sphere is warmer 
than that closer to the hot inner-sphere. This phenom- 
enon has also been observed in natural convection 
between concentric cylinders [25] and in a vertical slot 
[26]. Heat is convected from the lower portion of the 
inner-sphere to the top of the outer-sphere. As shown 
in Fig. 1, vorticity in the central core is almost constant 
near and above this Ra, indicating a region approach- 
ing solid-body rotation, and similar to flow in a ver- 
tical slot [2q. Figures 1 and 2 show the zf values 
normalized by @I,,, at various latitude angles. At 
lower Rayleigh numbers, vorticity is well dist~buted 
within the annulus. At much higher Rayleigh 
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0.0 02 0.4 0.6 0.8 1.0 

R 

Vorticity distribution for Ru = 7350 and Pr = 6 at 
various angular positions. $&,,, = 3.156. 

numbers, vorticity approaches zero in most of the 
central portion of the annulus, as shown in Fig. 2 for 
Z&J = 6.6 x IO’ and Pr = 6. This implies a stationary 
core region, and is similar to the natural convection 
flow in a vertical slot [28]. 

Figure 3 shows the isotherms and streamlines for 
Ra = 9 x lo4 and Pr = 6. The isotherms in this and 
later figures have been drawn at intervals of 0.1. Simi- 
larly, the streamlines in all the results presented here 
have been drawn at intervals of Y,,,/lO. The sign x 
indicates the location of !I’,,,,,, also known as the 
center of rotation for the fluid in the half annulus. As 

a+ II 
0.2 

0.0 

60 

160 -- 

-1.0 

0.0 02 0.4 0.6 0.6 1.0 
R 

FIG. 2. Vorticity distribution for Ru = 6.6 x IO’ and Pr = 6 FIG. 4. Isotherms and streamlines for Ra = 2.5 x IO’ and 
at various angular positions. jQ&,,, = 15.52. Pr = 0.7. Y_, = 0.105. 

180 

FIG. 3. Isotherms and streamlines for Ra = 9 x IO4 and 
Pr = 6. ‘I”,,, = 0.046. 

is clear from Fig. 3, the almost stagnant region in the 
bottom of the annulus is quite large, and it increases 
with Ra. We may note that the results for this case 
given by Singh and Chen [7] are in error. As admitted 
by them, their solution for this case should have 
included more terms in the series solution. A major 
short-coming of their numerical technique is that as 
the Grashof number increases, the number of terms 
required for accurate solution increases, resulting in 
a rapid increase in the amount of computation. For 
this reason, they could not get accurate results for 
moderate Gr of 15 000, and no convergence for 
GP > 20000. 

As the Rayleigh number increases further, the most 
common flow pattern, the ‘crescent eddy’ type, shown 
by the streamlines in Fig. 3, changes to a ‘kidney- 
shaped eddy’ type of flow, as shown in Fig. 4 for 

180 
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- 
180 

FIG. 5. Isotherms and streamlines for Ru = lo6 and Pr = 6. 
Y mali = 0.024. 

Ra = 2.5x IO* and Pr = 0.7, and in Fig. 5 for 
I& = IO6 and Pr = 6. Since the kidney eddy type 
differs only qualitatively from the crescent eddy type 
in the shape of streamlines in the low-speed central 
eddy region, the heat transfer characteristics of the 
two types of flow are similar. Streamlines in Fig. 5 
compare very well with the flow pattern found exper- 
imentally in the Fig. 8 of Yin et al. [4], while those in 
Fig. 4 are similar to the experimental flow pattern in 
the Fig. 5 of Bishop et cf. f2]. Moreover, both Figs. 4 
and 5 show a small anti-clockwise rotating secondary 
cell in the bottom of the annulus, while the primary 
central eddy is clockwise. For both Pr = 0.7 and 6.0, 
this secondary cell appears at Ra w 1.6 x IO5 near the 
bottom of the outer-sphere. As Ra increases, the sec- 
ondary cell grows and moves towards the inner- 

sphere ; Fig. 5 shows its location between the two 
spheres at 4 x 180”. Of course, the secondary cell 
represents small negative values of the stream 
function. We may note that in experiments with air in 
a spherical annulus of diameter ratio 1.19, Bishop ef 
al. [2] found two secondary cells having a sense of 
rotation opposite to that of the primary central eddy 
at high Rayleigh numbers. One of these cells was 
found near the top of the inner-sphere, and the other 
at the bottom of the outer-sphere. Ingham [9J, 
however, did not find any secondary cell numerically 
for the same parameters. For the much higher diam- 
eter ratio of 2, we find only one secondary cell at 
the bottom of the annulus for both air and water at 
Rayleigh numbers of order 10’. 

Figure 6 shows the temperature profiles at various 
angular positions for Ra = lo6 and Pr = 6. The large 
temperature gradients in the radial direction near both 
the spheres, and in the latitude direction for small b, 
values are clearly evident. This calls for high grid 
resolution, pointing to the usefulness of grid adap- 
tation, near both spheres and for # < 30” at high 
Rayleigh numbers. Also worthy of note in Fig. 6 are 
the temperature inversions in the core of the annulus. 

For liquid metals, the multi-cellular flow really 
comes to life, as shown in Figs. 7-9. Figure 7 shows 
the isotherms and streamlines for Gr = 20000 and 
Pr = 0.02. It may be noted that results given by Singh 
and Chen [7] for this case are wrong. As reported by 
them, they did not get convergence for these par- 
ameter values. Besides, they did not find the small 
secondary cell at the top of the annulus near the outer 
sphere. This cell has an anti-clockwise rotation, while 
the main eddy is clockwise. As the Grashof number 
increases, more cells are formed, as shown in Fig. 8 
for Gr = 50000 and in Fig. 9 for Gr = 90000, both 
for Pr = 0.02. In both Figs. 8 and 9, the clockwise cell 

FIG. 6. Temperature profiles for Ra = lo6 and Pr = 6 at various angular positions. (-1 cb = 0, 3% 
(. . *) # = 5,#, 140”; (---) # = IO, 60, 180”; (---) f#J = 15,SO”; (-----) tp = 20,100”. 

120” ; 
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FIG. 7. Isotherms and streamlines for Gr = 20000 and FIG. 9. Isotherms and streamlines for Gr = 90000 and 
Pr = 0.02. Y,,, = 0.459. Pr = 0.02. ‘I‘,,,,, = 0.649. 

FIG. 8. Isotherms and streamlines for Gr = 50000 and 
Pr = 0.02. Y,, = 0.579. 

at about 30” position corresponds to Y/Y,,, = 0.1. 
The anti-clockwise cells are weaker than the main 
eddy. Looking at Figs. 7-9, one notices that the small 
anti-clockwise cell at the top of the annulus in Fig. 7 
grows in Fig. 8 and breaks up into two counter-rotat- 
ing cells in Fig. 9. With so many cells appearing in the 
flow domain, much smaller steps in Gr have to be 
taken to ensure convergence of the solution near a 
Grashof number of 90 000. The isotherms are almost 
concentric circles at Gr = 20000 (Fig. 7) but get dis- 
torted (differently than those for Pr = 0.7 and 6.0) as 
Gr increases (Figs. 8 and 9). Since the bulk of the 
motion is confined around 4 = 90”, more distortion 
of the isotherms takes place in this region. 

Figure 10 provides the variation of maximum 
values of stream function, vorticity, and speed in the 
annulus with the Grashof number. It may be noted 
that the maximum speed, S,,,, scales with the Grashof 

number rather than the Rayleigh number. In fact, the 
effect of Pr on S,,, and 10l,,X is very small for all 
Grashof numbers. This figure also shows that, for 
large Grashof numbers, the maximum value of stream 
function within the spherical annulus decreases as the 
Prandtl number increases. 

The local Nusselt numbers of the inner- and outer- 
spheres, Nui and Nu,, at various latitude angles are 
shown in Figs. 11 and 12, respectively, as a function 
of the Rayleigh number for Pr = 0.7 and 6.0. The 
Nusselt number approaches unity in the conduction 
regime for Ra below 100. On both the spheres, some 
local values are larger than unity while others are less 
than unity at the same Rayleigh number, The dashed 
curves in Figs. 11 and 12 represent the variation of 
the average Nusselt number with the Rayleigh 
number; the lower curve being for fr = 0.7. A small 
effect of the Prandtl number is also visible in these 
figures. The Nusselt number is generally smaller and 
more uniform at lower Prandtl number. Results for 
Pr = 0.02 are not given since Nusselt number values 
in this case are close to unity for the range of Rayleigh 
numbers investigated. The maximum Rayleigh num- 
ber for Pr = 0.02 was 1800, and the average Nusselt 
number was 1.1. 

Clearly, the largest temperature gradient and heat 
flux occur at the stagnation point, while the largest 
boundary layer thickness and smallest temperature 
gradient occur at the separation point. Thus, for the 
inner-sphere, the local heat flux at the bottom is the 
largest while that at the top is smaI1. For the outer- 
sphere, the stagnation point is at the top along with 
the high heat flux, while the separation point is at 
the bottom resulting in the low heat flux there. The 
buoyant plume above the inner-sphere impinges upon 
the outer-sphere at the top, creating the thinnest 
boundary layer and the highest heat flux for the 
system. This warm fluid then moves down the bound- 
ary layer adjacent to the outer-sphere. For this reason, 
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FIG. 10. Maximum values of stream function, speed, and vorticity as a function of Gr for three Pr values. 

Pr = 6.0 -.-.-.- 
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FIG. 11. Local Nusselt number on the inner-sphere as a function of Ra at 30” intervals in I#J. 

higher resolution is required for C#I < 30” at Rayleigh 
numbers greater than about 10’. The presence of 
boundary layers on both walls and the large gradients 
near the top suggests that the mesh points be closely 
spaced for 4 < 30” in the 4 direction, and near both 
the spheres (R = 0 and 1) in the radial direction. Grid 
adaptation is specially useful for the large Rayleigh 
numbers. 

6. CONCLUSIONS 

An efficient numerical technique for the study of 
natural convection flow in a concentric spherical 

annulus with isothermal walls has been described. 
Results are presented for a diameter ratio of 2 and 
three Prandtl numbers, 0.02,0.7 and 6. The Rayleigh 
number based on the gap width varies from about 10’ 
to 106. Accurate results for higher Rayleigh numbers 
can be easily computed. The break-up into multi- 
cellular flow is found at high Rayleigh numbers for 
air and water, and at significantly low Rayleigh 
numbers for liquid metals. Results for the vorticity 
distribution within the spherical annulus are also pro- 
vided. Unlike previous methods, the present technique 
is quite efficient and robust in yielding accurate results 
for high Rayleigh numbers. 
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Local Nusselt number on the outer-sphere as a function of Ra at 30” intervals 
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CONVECTION NATURELLE ENTRE DES SPHERES CGNCENTRIQUES 

R&u&-On obtient une solution par differences finies de l’ecoulement convectif dans un espace entre 
spheres concentriques avec parois isothermes. La formulation fonction de courant-vorticitt des equations 
du mouvement est utilisee pour traiter la solution finale de l’etat permanent. La mbthode implicite des 
directions altembs est utilisQ pour la resolution des equations d&r&es avec une adaptation de grille 
monodimensionnelle locale pour les sauts de gradient dans quelques regions de l’boulement aux grands 
nombres de Rayleigh. On trouve la division en dcoulements multicellulaires aux grands nombres de 
Rayleigh pour l’air et l’eau et a faibles nombres de Rayleigh pour les metaux liquides. On obtient un 

excellent accord entre les don&es experimentales anttrieures et les calculs. 

NAT~RLICHE KO~EKTIGN ZWISCHEN KONZENTRISCHEN KUGELN 

Zusammeofassung-Mit Hilfe eines Finite-Differenzen-Verfahrens wird die station& natiirliche Kon- 
vektion in einem Ringspalt zwischen zwei konzentrischen Kugeln mit isothermen Oberfliichen berechnet. 
Fur die Impulsgleichungen der nichtstationlren achsensymmetrischen Striimung wird die Stromfunktions- 
Wirbeltransportformulierung verwendet; das Interesse liegt jedoch bei der sich am Ende einstellenden 
stationaren Losung. Fiir die zeitlichen Ableitungen werden Vorwlrtsdifferenzen verwendet, fur die rlum- 
lichen Ableitungen zentrale Differenzen zweiter Ordnung. Fiir die Losung der diskretisierten Gleichungen 
wird die implizite Methode der alternierenden Richtungen benutzt. Grtliche eindimensionale Git- 
teranpassung wird herangezogen, urn die tibermll3ig steilen Gradienten in einigen Bereichen der Striimung 
bei groBen Rayleigh-Zahlen aufzulosen. Bei hohen Rayleigh-Zahlen ergibt sich im Fall von Luft und 
Wasser em Aufbrechen in eine multizellulare Stromung, bei fliissigen Metallen ist dies bei recht kleinen 
Rayleigh-Zahlen der Fall. Die ~~reinstimmung mit friiheren experimentellen und numerischen Ergeb- 

nissen ist exzellent. 

ECTECTBEHHAR KOHBEKHM~ MEXAY KOHHEHTPHrlECKMMH CcOEPAMH 

AuuoTmmr+Koneurto-pastiocrnbtr+i M~TO~OM nony¶eHo pememie 3aLZaYH crawonapnoro ~-CECTEHHO- 

KOHBeKTHBHOrO Te'IeHHHR BROnbUeBOM KaHaneCH3OTepMEf¶eCKHMCTeHKaMH, 06pa30BaHHoM ROHUeHTpH- 
WCKHMH c@epabta. Ypamietuix QBH~eHHn Ma HecTawioHapHoro ocecaMMeTp&nKrioro TeqeHHn AaHbl B 
~OpMynH~BKe~yHKIIHRTOKa-3aBUX~HHOCTb,n~H~eM~OBHO~HHTe~~~AclaBnKeT KOHeYHOeCTa- 
uwonapnoe pemeatie. &Its epebiemarx llpOH3BOAHbIX HCnOJIb3yloTCll npa8bre pa3HOCTH, a arm 
rllWCTpaHCTBe.HHJAX-UeHTpanbHbre pa3IiOCTH BTOpOrO IlOpKAKa. KoHesHo-pmmcmbie ypaBHeHH%l 

fWIWOTCK HelBHblM MeTOAOM IlepeMeHHhrx IiaIlpaBJIeHHk &In aHaJlU3a tionbxrnix rparUreHTOB B HeKO- 
Top~xo6na~KxTe~eH~nnpn~bICo~~x~~axP3nernpHMeHneTcr noKanbHana,naisTauns 0~0~epHoii 
U?TKH. 06Hapy*eHo pa3Aenenne na hmoros~ewr~ TeqeHEe RpH BMCOKHX wcnax P3nez B cnyvae 

BO3AyXa H BOAbl K IlpSi CyUl~TBeiiHO HEi3KHX 'IHCJIKX P3JleS B Cny'Iae WiAKHx MeTaJ?nOB. nOny'ieH0 


